

Sergey V. Churakov :: Laboratory for Waste Management :: Paul Scherrer Institut

Fundamental and applied research on geochemistry of nuclear waste disposal in Switzerland

16th September, 2021 RWM RSO annual conference

Outline

- Radioactive waste in Switzerland
- Sectoral plan for Swiss Geological disposal
- Current focus of site selection process
- Laboratory for waste management (LES)
- Research on repository geochemistry
- Hot topics and needs for further research

Origin of Nuclear Waste and Disposal Concept http://www.ensi.ch FFFFFFFFFFFF Operation Decommissioning Medicine Industry Research **BZL-PSI** HLW I/LLW I/LLW ZWILAG Intermediate TTTTTTTTTT storage HLW I/LLW HLW Wintpestei 11 125 SMA ege ehái HLW 17FFM entóni‡ blöcke BE/HAA-Lagerbehät 2045->2050->2065 + 10⁵y 10⁶y+2075<-2060<-2050

Coupled phenomena in repository systems

Sectoral Plan and Legal Framewor1k

- Site selection process (SGT) is coordinated by
 Swiss Federal Office of Energy (BFE)
 SGT is conducted by National Cooperative for
 the Disposal of Radioactive Waste (Nagra)
 Technical surveillance is conducted by
 Swiss Federal Nuclear Safety Inspectorate
 (ENSI)
 The approval is in competence of the
- Swiss Federal Council (Bundesrat) Bundesrat decision can be challenged by Swiss National Referendum

Durpha New York for der 2 Jone										http://www.bfe.admin.ch							
Stage 2	1		St	tage 2		*	Stage 3						-	Public voting			
3 HLW and 6 L/	2(3) HLW and 2(3) L/ILW sites					1 HLW and 1 L/ILW sites				Public hearing			Pilot fa	cility			
Investigations	Review	Investigation F		Revie	Review/consultation		Investigations		Lizensing		Review/consultation		Operat	ion			
2004 2008	2011	2012	2014	2015		2018	2019	2021	2022	2024	2025		202	29	2030	2040 20	60

Site exploration campaign 2019-2021

Importance of system understanding

- Underground exploration campaign of the host rocks at potential siting regions reveals non-negligible heterogeneities in terms of mineralogy, pore water chemistry and rocks petrophysical properties.
- *In situ* site specific geochemical conditions and the ones imposed in the laboratory during sample characterization are not identical due to various technical and methodological constraints.
- *In situ* condition in repository will evolve with the time due to the interaction between engineered barriers and the natural system evolution.
- The laboratory data need to be corrected for the deviation from *in situ* condition based on thermodynamic models. Same data and model are used for the model based prediction of the repository *in situ* conditions for timescale of several 100'000 years.

LES mission and vision

<u>LES serves</u> the **national needs, present and future**, in providing a **scientific basis for the safe disposal of radioactive waste**.

LES supports Nagra by providing **state-of-the-art synthesis reports and data for repository safety assessment** in the context of the national waste management programme.

LES carries out research in the areas of:

 repository in situ conditions and their evolution, and repository induced effects including both modelling and experimental aspects

- interface chemistry and transport of radionuclides in repository systems
- fundamental understanding of system behaviour for long-term predictive modelling and knowhow transfer.

LES maintains:

- a proper balance between applied and fundamental research
- state-of-the-art expertise and knowledge in strategic areas

LES Long term vision:

Fully coupled THMC description of repository in situ conditions supported by multiscale modeling and experimental data at laboratory and field scale

LES Research portfolio

LES-Organization

SLS (PSI)

SINQ (PSI)

Hot Laboratory (PSI)

Modeling Platform

Essential

Infrastructure

Education platform

XRD-Lab (UniBe)

Mont Terri and Grimsel URLs

European joint Programming EURAD (HORIZON 2020/EURATOM)

- In 2018 SBFI has mandated PSI and Nagra to participate in the European Joint Programme (EJP) as Research Entity (RE) and Waste Management Organization (WMO), respectively.
- PSI/NES is the leading beneficiary and contact point for other RE participating as third linked parties from Switzerland (e.g. EMPA, ETHZ).

EURAD-1(2019-2024) budget:	59`871 KEUR
PSI budget (incl. EMPA):	2`343 KEUR
EU contribution:	50 %

51 Mandated Organisations 54 Linked Third Parties 23 Countries 21 EU Member-States 2 Associated Countries

EURAD: "... new era of efficient public RD&D funding in Europe..."

Towards more realistic process modelling

eurad MODATS

Huang, Shao, Wieland, Kolditz, Kosakowski (2021) www.nature.com/npjmatdeg 5, N4.

Hot research topics and strategic developments

- Mechanistic understanding of radionuclide uptake mechanisms
- Coupled diffusion/advective transport phenomena and in reactive porous media
- Thermodynamic models and databases
- Frontiers of multiscale scale modelling

After Mahros at al. (2021) (in prep.)

Phyllosilicates reactivity

Churakov & Schliemann (2021) AIPEA

Spectoscopy meets molecular simulations

Conventional XAS data analysis

- 1) Measure of XAS spectrum
- 2) Fit shell model
- 3) Interatomic distances consistent with presumed structure?

Computational XAS spectroscopy

- I) Measure of XAS spectrum
- II) Molecular modelling of potential structures
- III) Calculation of XAS spectra based on simulated structures
- IV) Linear fit of calculated XAS spectra to measured ones

Churakov & Dähn (2013) ES&T, 47 6978.

k [Å-1]

40 45 50 55 60 65

Me^{II} adsorption on Montmorillonite

Wet chemistry, spectroscopy & ab initio simulations

Spectroscopy and molecular modelling confirm existence of specific surface sites responsible for RN uptake.

Clay edge dissolution mechanism

Ab initio molecular dynamics simulations

- Complex multistep reaction kinetics
- Concurrent reaction pathways
- Importance of solvent

Sorption competition in clay minerals

Sorption of **trace element** as function of increasing **blocking element** (binary systems). Metals involved Ni^{II}, Zn^{II}, Co^{II}, Fe^{II}, Pb^{II}, Eu^{III}, Am^{III}, Th^{IV}, Np^V and U^{VI}.

Me ^{II} - Me ^{II} Me ^{III} - Me ^{III}	competitive
Me ^{III} - Me ^{II} Me ^{IV} - Me ^{II} Me ^{VI} - Me ^{II}	not competitive
Me ^{IV} - Me ^{III} Me ^{VI} - Me ^{III}	not competitive
Me ^{II} - Me ^{III}	partially competitive

-8

-7

Same strong sites.

SC constants.

-6

-5

log [Co_{eal} (M)]

• Sorption controlled by strength of

• No need to change the model

-4

-3

Non-competitive adsorption

- Different strong sites.
 - Element specific strong sites need to be defined in the model

Partial-competitive adsorption

- Only partially same strong sites.
- Element specific subset of strong sites with different affinities and capacities need to be defined in the model.

Marques Fernandes, M. and Baeyens, B. (2020) Competitive adsorption on illite and montmorillonite: Experimental and modelling investigations. Nagra Technical Report NTB 19-05.

"Bottom-up" prediction of radionuclide uptake by argillaceous rocks

Bottom-up approach based on:

- clay content
- RN speciation in porewater
- RN-specific sorption model for illite/smectite

OPALINUS

0-13 -12 -11 -10 -9 -8 -7 -6 -5 -4

log [Euent (M)]

log [U_{eal} (M)]

Marques Fernandes, M. and Baeyens, B. (2020) Competitive adsorption on illite and montmorillonite: Experimental and modelling investigations. Nagra Technical Report NTB 19-05.

-5

-8

log [Cs_{eal} (M)]

Tyagi et al. (2013) Adv. Water. Res; Churakov et al. (2014) Appl. Clay Sci.,; Gimmi & Churakov (2019) Appl. Clay Sci.

Prasianakis, et al. (2018) Geofluids, ID 9260603

Slow reactivity

Digital Twin and Numerical diagnostics

Augmented reality by **pore scale lattice Boltzmann modelling & diagnostics**. Classical nucleation theory & heterogeneous reactions kinetic Pore scale multicomponent transport

Injection of 10 mM SrCl₂ and 10 mM Na₂SO₄ \rightarrow celestine precipitation, crystal growth

Layers of diagnostics

Evolution of experiment (camera)

Local flow-field and streamlines visualization (numerically calculated, experimentally verified).

Spatial resolution of velocity field at different stages of the experiment (numerically calculated)

Local species concentrations, saturation ratio (numerically calculated, interplay of advection/diffusion)

Local precipitation rates at fluid-solid interface, prediction of directional differential growth (numerically calculated, color: precipitation rate)

$SrCl_{2(aq)} + Na_2SO_{4(aq)} \rightarrow SrSO_{4(s)} + 2NaCl_{(aq)}$

Poonoosamy, J., Westerwalbesloh, C., Deissmann, G., Mahrous, M., Curti, E., Churakov, S.V., Klinkenberg, M., Kohlheyer, D., Von Lieres, E., Bosbach, D., Prasianakis, N.I., A microfluidic experiment and pore scale modelling diagnostics for assessing mineral precipitation and dissolution in confined spaces, *Chemical Geology*, 528, 5, 119264 (2019) Prasianakis, Churakov et al. Neural network based process coupling and parameter upscaling in reactive transport simulations, *Geochimica et Cosmochimica Acta*. 291 126-143 (2020)

Geochemical Toolkit: All-in-One Databases & Models

www.psi.ch/les

Labs & User Services Visitors Visitors Vindustry V Our Research V Career & Further Education V About PSI

PSI Home > Laboratory for Waste Management (LES)

Laboratory for Waste Management (LES)	ns	μs	ms	S	d	У	10 ³ y	Time	b			
About LES 🗸 🗸			420			Opatinus Cay	aguna an		71			
Team						20			\boldsymbol{u}			
Groups	nm	μr	<u></u> n	mm	m		km	Space				
Research Projects	Labora	tory fo	r Was	te Mana	σement ((LES))		b			
Research Partners and Cooperations	LES is the Sw	iss compete	UNIVERSITÄT illa- BERN									
Teaching and Education	ceous rocks a	and cement a	and their a	oplication to de	eep geological s	systems a	and Swiss rad	ioactive waste repo	si-			
LES Events tories. LES offers attractive research projects at the bachelor, master, PhD, and postdoc levels in environmenta									Contact			
Software and Database	Sciences and	nucleareng	ineening						Paul Scherrer Institut Laboratory for Waste Management			
Scientific Highlights Core Competences								Prof. Dr. Sergey Churakov 5232 Villigen PSI				
Hot New Papers	– Geoche	mistry of rep	ository sys	stems					Secretary			
Publications ~	– Retentio	on and migra	Beatrice Gschwend Telephone: +41 56 310 24 17									
Annual Reports	– Thermo	dynamic dat	abases			,	-		E-mail: beatrice.gschwend@psi.ch			
	- Geoche	mical educa	tion						Contact			
	Facilitie - <u>Synchro</u> - Numerio	es, Tools	s and In material ch	nfrastruc aracterization istic, pore Latt	ture and neutron im ice-Boltzmann,	aging and conti	inuum scales		University of Bern Institute of Geological Sciences Prof. Dr. Sergey Churakov Baltzerstrasse 1+3 3012 Bern			
Progress Report 2020	– Geoche – State-of	mical and th f-the-art rad	ermodynar iochemical	nic modeling t laboratories	ools			_	Homepage NES Nuclear Energy and Safety Research Division at PSI			

Intranet LES

Access for LES only

UL EN TIL

People, content ...

- Mechanistic understanding of radionuclide uptake needs further investigations combining traditional wet chemical methods, spectroscopy and theoretical modelling
- Multiscale reactive transport phenomena are extremely challenging and need further development of upscaling strategies and numerical concepts for parameter transfer between model and codes at different scales
- There is a large potential in application of ML/AI algorithms for the model coupling and acceleration of geochemical modeling
- Experimental studies are indispensable for validation of numerical models

Wir schaffen Wissen – heute für morgen

Thank you for your attention!

Acknowledgments to Nagra for a longstanding partnership!

