

Radioactive Waste Management

Corrosion and Leaching of Carbide Fuels in a Geological Disposal Facility setting.

Dimitris Samaras, University of Bristol

Intro

- NDA UC Inventory
- Advantages
 - Good dimensional stability
 - Fission Gas Retention
 - 30% higher density over UO₂
 - 6x Thermal Conductivity over UO₂

Stoichiometries

- 3 stoichiometries
- UC most preferred
 - UC₂ : BCT < > FCC
 - $U_2C_3 \rightarrow UC_2 + UC$

bristol.ac.uk

Uranium-Carbon Phase Diagram Image: Jones, R. W. (1972). *Uranium Carbide as a Nuclear Fuel*.

Hydrolysis - Oxidation

- Rate dependant on temperature
 - Mild at 20°C ; vigorous at around and above 40 °C

K.M. Taylor and C.H. McMurtry. Synthesis and Fabrication of Refractory Uranium Compounds, *U.S. Atomic Energy Commission*, 1960

Product formulas dependant on

the stoichiometry M.J Bradley and L.M. Ferris, Hydrolysis of Uranium Carbides between 25 and 100 °C : I and II (1962 & 1964)

- UC -> mainly CH₄
- U₂C₃, UC₂ & mixtures -> mainly H₂, C₂H₆, C₃H₈, and heavier hydrocarbons

- Diluted in groundwater Excavation and waste deposition
- Dry oxidation: linear rate law,

K.A. Peakall and J.E. Antill, Oxidation of Uranium Monocarbide, Journal of the Less-Common Materials, 1962

– N.B. Min temp: 230°C

The samples

- O₂/N₂-free environment
 Ar glovebox
- 6 MBq
- Results
 - $-2 \text{ cm } \emptyset \text{ x } 2 \text{ cm height}$
 - -Weight: 82 gr each

- Needed to cut into 0.5cm-sized cubes
- Accutom
- However...

UC Corrosion Experimental Cell Concept

bristol.ac.uk Image: Prof. David Reed, TRANSCEND 1st Industry Roadshow, Warrington

w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 16 17 18 19 20 21 22 5 niceday by Guilbert RP300S shatter resistant 181648

X-Ray Tomography

- Two-step process
- Dry Scan -> Suitable Magnification Scale
 - -0.4X, 4X, 10X, 20X, 40X
 - 4X for millimetre-size fragment: 0.4X for bigger ones
- Wet Scan to observe corrosio

Data Analysis

Limitations so Far

- Small water reservoir Corrosion Halt
 - Larger glass tube attachable/detachable to a plastic base
- Vibration
 - More secure fixing; vertical placement at all times
- No pre-corrosion composition identification
 - X-Ray Diffraction on each fragment pre- and post-hydrolysis

Future work

- Additional X-Ray experiments
 - Tomography
 - Diffraction
 - Synchrotron
- High-Speed Atomic Force Microscopy
 - Nanoscale

Future Work

- Intact Pellet partial corrosion
 - $-\mathsf{EM}$
 - -SIMS
- Solution Analysis
 - -TRLFS University of Surrey
 - -ICP-MS/OES

Radioactive Waste Management

Thank you for listening!

Acknowledgements

- Professor Tom Scott
- Dr. Ross Springell
- Dr. Rosie Hibberd
- Dr. Christopher Jones
- Dr. Jacek Wasik

This research was funded by AN INVESTIGATION INTO CORROSION AND LEACHING OF CARBIDE FUELS IN A GEOLOGICAL DISPOSAL FACILITY (GDF) SETTING, project code RWM232