The Microbial Impact on Cellulose Hydrolysis in a Cementitious Geological Disposal Facility

Naji M. Bassil

Research Centre for Radwaste Disposal & Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

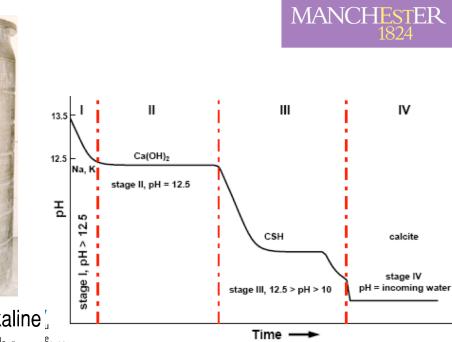
Study microbes in a GDF

• Cellulose Degradation

Table 9: Mass of materials by waste category

Material	Mass (tonnes)			
	HLW	ILW	LLW	VLLW
Metals:				
Stainless steel	1.9	28,000	150,000	8.2
Other steel	-	32,000	370,000	1,100
Iron	-	3,200	37,000	4,300
Magnox/magnesium	-	6,500	130	0.11
Aluminium	-	1,900	19,000	8.1
Zircaloy/zirconium	-	1,300	240	0.11
Copper & alloys	-	300	13,000	440
Nickel & alloys	21	88	1,100	-
Uranium	-	1,000	970	55.0
Other metals	-	1,400	41,000	140,000
Organics:				
Cellulosics	-	1,200	68,000	41,000
Plastics	-	4,600	89,000	830
Rubbers	-	1,100	16,000	210
Ion exchange resins	-	430	200	-
Hydrocarbons	-	46	8,100	1,100
Other organics	-	370	31,000	19,000
Inorganics:				
Asbestos	-	66	22,000	28,000
Cementitious materials	-	64,000	780,000	2,100,000
Graphite	-	82,000	15,000	-
Sand, glass & ceramics	2,700	1,200	20,000	150
Ion exchange materials	-	3,200	74	-
Brick, stone & rubble	-	1,100	77,000	430,000
Sludges, flocculants & liquids	490	31,000	12,000	2.4
Other inorganics	-	1,200	340	27,000
Soil	-	150	92,000	140,000
Unspecified materials ⁽¹⁾	0	8,700	12,000	220
τοται	3 200	280.000	1 900 000	2 900 00

TOTAL 3,200 280,000 1,900,000 2,900,000
* Higher activity wastes (HLW, ILW) and some LLW unsuitable for near-surface disposal are being accumulated in stores.



2019 UK Radioactive Waste Inventory

Experimental and Theoretical Studies on Alkaline Degradation of Cellulose and its Impact on the Sorption of Radionuclides

L.R. Van Loon and M.A. Glaus Component	Concentration	% of DOC
	(mM)	
DOC	317	100
alkali extractable DOC	16.6	5.2
¹ Oxalic acid	n.m.	-
¹ Formic acid	3.9	1.2
¹ Acetic acid	2.3	1.5
¹ Glycollic acid	1.1	1.0 p
¹ Lactic acid	1.9	0.9 ^{er}
¹ Succinic acid	0.1	0.1
² α-Isosaccharinic acid	24.5	46
² β-Isosaccharinic acid	20.3	39

Complex & mobilise radionuclides:

- Eu(III) (Vercammen et al. 2001)
- Am(III) (Tits at al. 2005)
- Th(IV) (Wieland et al. 2002)
- Np(IV) (Rai et al. 2003)
- U(IV) (Warwick et al. 2004)

Can Microbes mitigate this enhanced radionuclide mobility?

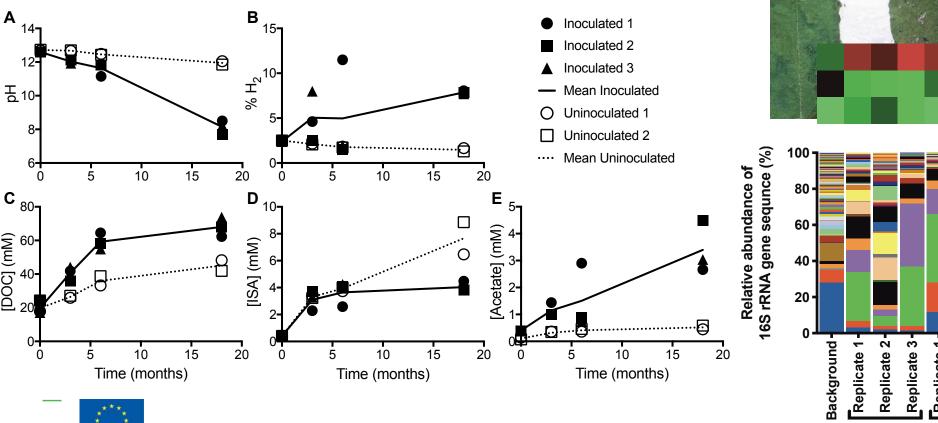
Microbial Cellulose Degradation

MANCHESTER 1824

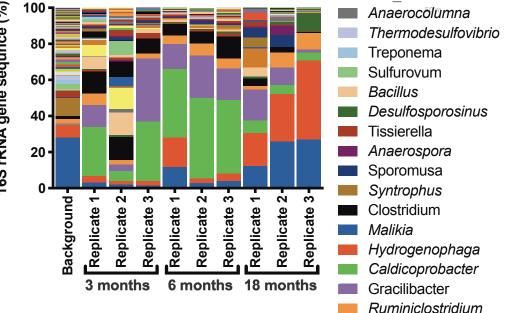
Mineralogical Magazine, November 2015, Vol. 79(6), pp. 1433–1441

Microbial degradation of cellulosic material under intermediate-level waste simulated conditions

Naji M. Bassil 1,2 , Alastair D. Bewsher 1 , Olivia R. Thompson 3 and Jonathan R. Lloyd 1,*



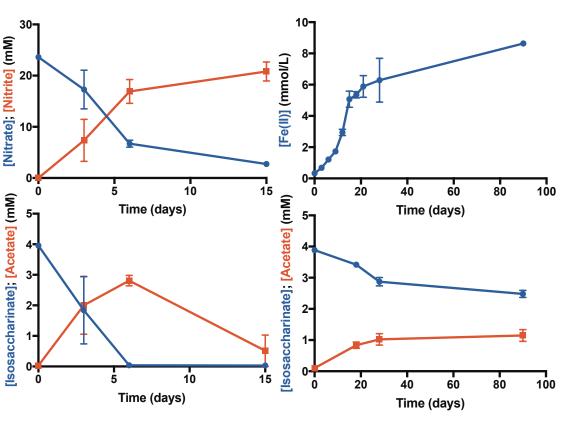
FEMS Microbiology Ecology, 96, 2020, fiaa102


Advance Access Publication Date: 27 May

Research Article

Enhanced microbial degradation of irradiated cellulose under hyperalkaline conditions Naji M. Bassil^{1,2,*,†}, Joe S. Small^{1,3} and Jonathan R. Lloyd^{1,2}

Microbial ISA Degradation

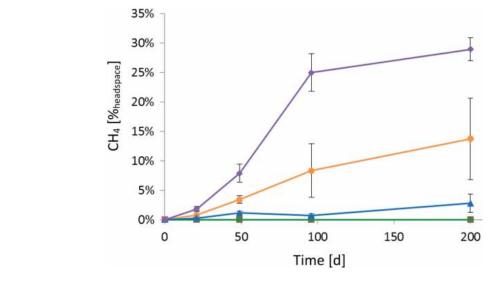

The ISME Journal (2015) 9, 310–320 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismei

OPEN

HOH₂C-

ORIGINAL ARTICLE Microbial degradation of isosaccharinic acid at high pH

Naii M Bassil^{1,2}. Nicholas Brvan³ and Ionathan R Llovd¹


Mineralogical Magazine, November 2015, Vol. 79(6), pp. 1443–1454

Microbial degradation of isosaccharinic acid under conditions representative for the far field of radioactive waste disposal facilities

MANCHESTER

 ${\rm Gina}\;{\rm Kuippers}^{1,*}, {\rm Naji}\;{\rm Milad}\;{\rm Bassil}^1, {\rm Christopher}\;{\rm Boothman}^1, {\rm Nicholas}\;{\rm Bryan}^2\;{\rm and}\;{\rm Jonathan}\;R.\;{\rm Lloyd}^1$

OPEN a ACCESS Freely available online

H-

COOH

CH₂

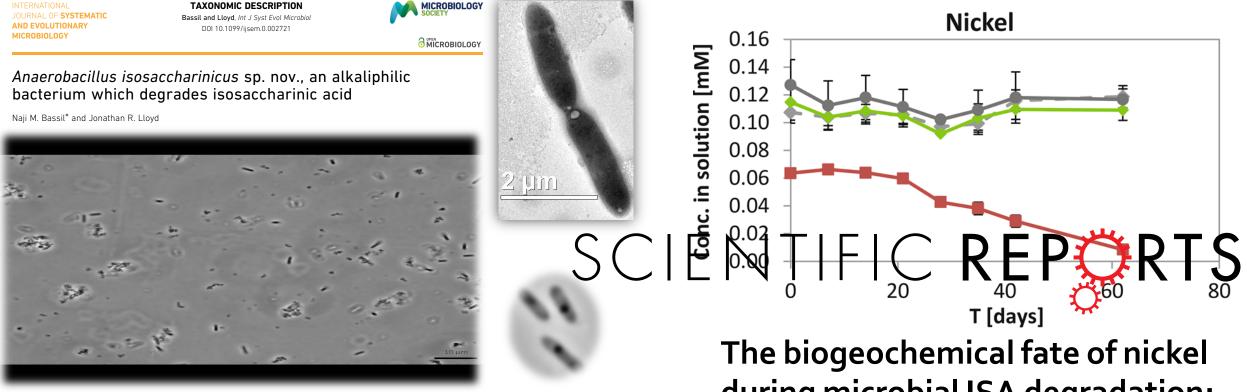
-C –

ISA

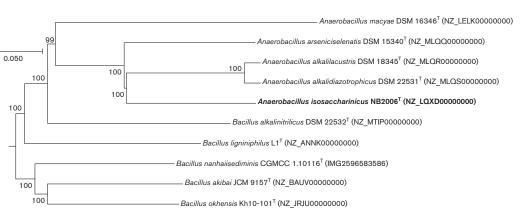
ĊH₂OH

-OH

Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal


Simon P. Rout, Jessica Radford, Andrew P. Laws, Francis Sweeney, Ahmed Elmekawy, Lisa J. Gillie, Paul N. Humphreys*

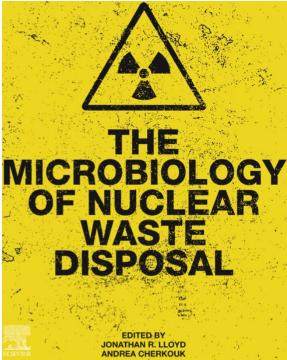
Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities


Simon P. Rout¹, Christopher J. Charles¹, Charalampos Doulgeris¹, Alan J. McCarthy², Dave J. Rooks², J. Paul Loughnane², Andrew P. Laws¹, Paul N. Humphreys¹*

A. isosaccharinicus

MANCHESTER 1824

Published online: 08 June 2018



The biogeochemical fate of nickel during microbial ISA degradation; implications for nuclear waste disposal

Gina Kuippers ¹, Christopher Boothman¹, Heath Bagshaw¹, Michael Ward², Rebecca Beard^{3,5}, Nicholas Bryan⁴ & Jonathan R. Lloyd¹

Conclusion & Future Work

- Microbes are present and active in the subsurface
- Studies support the Bio-Barrier concept
 - Microbial cellulose degradation under hyperalkaline conditions
 - Microbial ISA degradation under GDF-relevant conditions
 - Metals immobilisation
- "Microbes are doing things we didn't know they could do 10 years ago" Robert H. Jackson

MANC

Acknowledgements

National Council for Scientific Research

