

Dissolution in Halite

Implications for GDF Safety

"A GDF constructed in halite would provide a **dry environment with no water** available to dissolve and transport radionuclides. Even the water in the nearest porous sedimentary rocks is likely to be a **very dense brine** with no tendency to rise and mix with shallow fresh groundwater."

- Technical Background to Generic DSSC, December 2016

Table 1 - Initial or healed permeabilities

Test	Permeability (m ²)
3	2.23×10^{-20}
/ 13	3.09×10^{-21}
16	2.10×10^{-20}
17-1	2.19×10^{-21}
17-2	1.35x10 ⁻²¹ (Stormont, 2001)
	(

"A porosity of 0.001 is consistent with previous measurements for rock salt with with permeabilities on the order of 10^{-21} m²" – Stormont, 1990

- Water types in bedded salt
 - 1. Disseminated clay (< 5 vol-% total; ~25 vol-% brine)
 - **2.** Intragranular brine (fluid inclusions; 1 2 vol-%)
 - 3. Hydrous minerals (e.g., polyhalite, bischofite, epsomite)
 - 4. Intergranular brine (between salt crystals; << 1 vol-%)

(DECOVALEX, 2020)

INSTITUTE FOR ENERGY AND ENVIRONMENTAL FLOWS EPSRC

- A density difference appears to promote dispersion of a reacted infiltrating fluid
- Fluid migrating in a damage zone may dissolve other accessory minerals and become dense compared to the formation fluid
- Beds of accessory minerals should be considered when modelling pathways for radionuclide dispersion

British Geological Survey

(RWM Ltd., 2016)

⁽SFScience.net., 2022)

- Minerals which are more soluble in hotter water may be dissolved more in the area around a GDF
- This may promote increased permeability around a drift, allowing a pathway for contaminated water to escape
- Changing permeability also affects the ability of the GDF to contain gasses
- The exact mechanics of this system are poorly understood

(Anderson, 1972)

EPSRC