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Background – safety case 

“The safety case for radioactive waste disposal is a 
synthesis of the evidence, arguments and methods that 
demonstrate that a disposal facility will be safe …… with no 
further maintenance once it has been sealed and closed”
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Background - time 
• Need to ensure that significant leakage will not occur on 

time scales of up to 1 million years
• Laboratory experiments may last for a few years

(SKB (SVENSK KÄRNBRÄNSLEHANTERING AB)

• Underground test facilities 
may be operational for up to 
50 years

• Can one justify extrapolating 
results from experiments for 
1 million years into the 
future?
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Evidence from the petroleum industry 
• The petroleum industry has drilled millions of wells in a 

huge range of tectonic and sedimentary environments
• Huge amount of data has been collected

• Subsurface structure (seismic)
• Fluid distributions and properties (composition and pressure)
• Rock properties (fluid flow and mechanical)

• Data provides valuable information on how shales 
impact fluid flow on timescales ranging from a few days 
to 100’s Ma

• Study undertaken to gather this evidence and assess its 
implications for the safety case for shale-hosted 
radioactive waste disposal repositories
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Shale matrix properties
• Laterally continuous clay-rich shales have such low 

permeabilities and high capillary pressures that flow 
through matrix will be insignificant

• Key concern is concentrated flow through faults and 
fracture

Leeds data
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Sub-seismic structures

• Seismic resolution means that 
it is unlikely that faults with 
throws of <10 m can be 
imaged

• Fractures cannot be detected
• Need to demonstrate that if 

present such structures will 
not compromise safety of 
repository

Watterson et al. (1996)
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Shale caprocks to petroleum reservoirs
• Heavily faulted reservoirs with shale caprocks retain 

considerable petroleum column heights for >>10 Ma
• Faults were either never conduits for fluid flow or they 

have resealed 

Erratt et al (2005)
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Shale caprocks to petroleum reservoirs
• Significant evidence that petroleum can leak through 

shale caprocks along faults/fractures
• Pockmarks aligned with faults, gas clouds above faults etc.

Roelofse et al. (2020) Ostanin et al. (2017)
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Caprock leakage - Fracture pressure
• Maximum pore pressure often 

coincides with pressure required 
to fracture a formation

• Often interpreted that fractures 
form and leakage occurs when 
pore pressure reach fracture 
pressure

• Could also be interpreted as 
fracture closure pressure

• Fact that overpressure 
maintained is good evidence of 
self-sealing

From Riis and Wolff (2021)
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Shale caprocks to petroleum reservoirs
• Leakage seems to occur when high fluid pressures cause 

result in fault movement or fracture formation
• Significant overpressures can be maintained even when 

reservoirs have totally leaked petroleum – evidence for 
the ability of faults to reseal

Example of leakage in Central 
Graben, North Sea, based on 
Winefield et al. (2005)
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Impact of glaciation
• Shallowly buried (300 m) reservoirs have retained oil & gas 

despite repeated glacial cycles (2 km ice) and up to 2 km 
uplift and erosion

• Evidence of leakage but underpressures suggest resealing

Piaseck et al. (2018)Løtveit et al. (2019) Norwegian Petroleum Safety Authority
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Overconsolidation ratio
• Petroleum industry has used 

overconsolidation ratio (OCR) 
as a guide to whether leakage 
along faults or fractures likely

𝑂𝐶𝑅 =
𝜎𝑚𝑎𝑥
′

𝜎′
• OCR > 2.5 often thought to be 

high risk of leakage
• Many intact petroleum 

reservoirs with shale caprocks
with OCR>> 2.5

Examples of petroleum reservoirs 
sealed by shale caprocks with high 
OCR’s
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Leakage due to overinjection
• Several examples of where over-injection 

during water flooding or slurry injection has 
resulted in leakage to the sea floor via 
fractures

• In all cases, leakage has stopped soon after 
injection was altered -
https://www.youtube.com/watch?v=OtJTI4n
v1QI

• Would this occur is a more compressible 
phase was leaking (i.e. gas)?

• Potentially a major risk if gas is being sourced 
from high permeability reservoir?

Oil leakage from Frade Field, 
offshore Brazil

During injection After injection

https://www.youtube.com/watch?v=OtJTI4nv1QI
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Shale resource plays
• Shale plays are major source of gas in USA
• Over 100,000 wells drilled between 2014 and 2022
• Production is only possible if wells are hydraulically 

fractured and injected with proppant
• Shale resource plays are 

very stiff compared to top 
seals and radioactive waste 
repositories (see later)

• Included in study as an end-
member
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Shale resource plays - pressures
• Most plays contain 

faults and fractures but 
abnormal pressures 
have been maintained 
in some cases for >300 
Ma

Gale et al. (2014)
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Shale resource plays
• Production is from layers containing <40% clay
• Fractures in shale with high clay content rapidly close 

due to proppant embedment

1 - Hupp & Donovan, 2018; 2 - Smye, 2019; 3 - Egbobawaye,
2016a,b; 4 - Chalmers & Bustin, 2012; 5 - Mnich, 2009; 6 - Prasad
et al., 2016; 7 - Unpublished proprietary data from internal study

Kassis and Sondergeld (2010)
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Hydraulic fracture – treatment size

1 – Fan et al. (2010); 2 – Thompson et al. (2011); 3 – Ciezobka & Salehi (2013); 4 – EERC (2013); 5 – Nicot
et al. (2014), 6 – Leonard et al. (2007); 7 – Shelley et al. (2012); 8 – Harpel et al. (2012); 9 - Zhou, et al. 
(2016); 10 - BCOGC. (2016); 11 - Xu et al. (2015); 12 – Fu et al. (2017); 13 - Cipolla et al. 2018; 14 –
Ejofodomi et al. (2018)
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Hydraulic fracture – propogation
• Despite massive treatments hydraulic fractures stay 

within the shale play 

Fisher and Warpinski (2011)
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Brittleness index

• Shale industry developed 
brittleness index (BI) to 
identify to identify where 
to place hydraulic 
fractures

• BI calculated from 
dynamic elastic properties

• Note: brittleness is not a 
rock property but elastic 
properties correlate with 
strength
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Fluid flow and geomechanics
• Brittle and ductile behavior are 

key end-member modes of 
deformation controlled by 
both rheology and stress 
conditions

• Ductile behavior generally 
results in permeability 
reduction whereas brittle 
behavior can often increase 
permeability

• Cap-plasticity model provides a 
good basis for understanding 
brittle-ductile behavior

𝑃 =
𝜎1+𝜎2+𝜎3

3
- Pp

𝑄 = 𝜎1 − 𝜎3
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Evolution of strength during burial
• As sediments are buried 

their porosity is reduced 
and their strength is 
increased as a result of 
compaction and 
diagenesis

20oC

100oC

150oC
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Stress vs strength during burial

No impact 
or barriers

Barriers

Conduits
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Impact of uplift

Barriers Conduits

Deformation at 
maximum burial 

depth

Deformation after 
uplift• Strength increase during burial

• If the rock is uplifted its strength 
will remain almost unchanged

• Mean effective stress (P) will be 
reduced resulting and therefore 
faults will tend to be brittle, 
dilatant features  with increased 
permeability

• The structure of faults in outcrop 
may not always be representative 
of what is present in the 
subsurface
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Fracture closure
• Even if a open fracture or 

dilatant fault is formed they 
can often rapidly self-seal

• Result presented suggest faults 
and fractures in shale are 
prone to self-seal

• Self-sealing can simply by 
processes such as clay swelling

• Increasing effective stress 
(reducing pore pressure) is a 
strong driver for self-sealing

Plot of effective normal stress vs 
hydraulic conductivity for a packer test 
conducted in a faulted interval of the 
Opalinus clay (from Lisjak et al., 2016).
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Importance of drive
• Drive is needed to both 

produce significant amounts of 
fluid flow and to maintain 
pressures that are sufficiently 
high to form dilatant 
faults/fractures and prevent 
fracture closure

𝑄 = −
𝐴𝑘∆𝑃

𝜇𝐿

Darcy’s law

From Riis and Wolff (2021)
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Importance of drive
• Equilibration of fluid properties 

(pressure, density, 
compositions etc.) is very slow 
unless significant amounts of 
drive exists

Drive = −
𝑘∆𝑃

𝜇

Smalley el al. (2015)
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Drive mechanisms

• Key processes driving 
subsurface fluid flow 
are:-
• Topology driven 

advection
• Compaction 

(dewatering)
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Implications: mechanical properties
• Difficult to compare 

mechanical properties of shale 
barriers because 

• Dynamic elastic properties are 
comparable as measured 
using same downhole logging 
tools

• Opalinus has lower BI than 
shale plays and most caprocks

• High tendency for faults and 
fractures to self-seal
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Implications mineralogy

• Caprocks have similar clay 
content to potential 
radioactive waste disposal 
sites

• Shale plays have lower 
clay content

• High tendency for faults 
and fractures to self-seal
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Implications: drive
• Aquifers are weak (close to normal pressure) around potential 

shale hosted radioactive waste disposal sites
• Ancient ground waster in aquifers above and below Opalinus
• Shale is slightly overconsolidated so compaction driven fluid flow 

is not an issue
• Relatively minor relief so large hydrodynamic gradients do not 

develop
• Pore waters in Opalinus controlled by long-term diffusion
• No processes to drive flow through the Opalinus

(from Gautschi, 2017)
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Conclusions
• A review of shale barrier performance in petroleum systems 

shows there is a strong tendency for faults and fractures in clay-
rich shales to self-sealing

• Barrier performance demonstrated over huge time-scales

• Significant fault and fracture-related flow through clay-rich shales 
requires very high pore pressures - drive is need

• Sites currently being considered for disposal (e.g. Opalinus, 
Switzerland) have properties that make any faults and fractures 
formed prone to self-sealing

• Pre-existing or newly formed sub-seismic faults are unlikely to 
represent a risk to the integrity of the repository


