

RSO Discipline Update: Engineered Barrier Systems

Majid Sedighi (University of Manchester), Matthew Kirby (NWS)

Introduction

Majid Sedighi (DL)

Reader at UoM

Expertise in coupled THCM behaviour of geo-materials (e.g., bentonite)

Matthew Kirby (Lead SME)

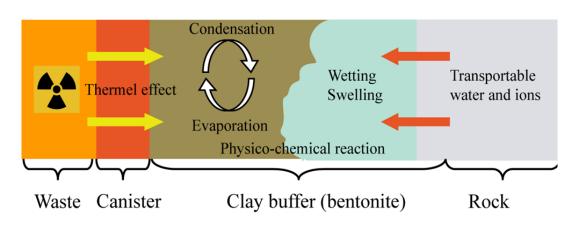
Research Manager at NWS

Bentonite SME

Background in geochemistry

Sam Parsons, Research Manager, Coupled processes SME

<u>Will Bower, Senior</u> Radiochemist, Project lead for LHGW backfill development



<u>Simon Norris</u>, Principal Research Manager, NWS lead on gas, nearfield processes, GDF-driven coupled processes

EBS Discipline Background

- To understand the performance of engineered barrier materials in UK geological environments to inform the GDF design and safety case.
- Focus is primarily on backfill materials and accessway seal materials.
- Key interest in coupled thermal-hydraulic-mechanical-chemical-biological processes occurring in different barriers, and at the interfaces of barrier components.
- Encompasses fundamental research on the molecular level through to understanding material behaviour from field scale experiments and analogues.

HotBENT experiment, Heater # 1 instrumented and partially backfilled. <u>Reproduced from GTS</u> <u>website</u>

EBS Discipline Updates

Bentonite related PhD projects

University of Edinburgh

 Managing LHGW-derived gas via innovative Engineered Barrier System (EBS) materials

University of Manchester

 Bentonite microbial activity in geological disposal of radioactive waste

Imperial College London

- Modelling the behaviour of compacted bentonite at high temperatures
- Developing fundamental understanding of porosity evolution in compacted bentonite
 University College
 London
- Long-term performance of a geological disposal facility in response to permafrost and climatic variation

EBS Discipline Updates

Cementitious backfill related PhD projects

University of Strathclyde

- NRVB performance at high temperatures
- Advanced characterisation of hydrothermally aged cement

University of Manchester

- Mechanisms of radionuclide retention in aged cements
- Uranium and U-series radionuclide behaviour in phosphate-based cement systems

Note that some projects fall under other disciplines (e.g. materials, radiochemistry)

University of Leeds

Hydrothermal aging of cement materials

ICL

- Long term performance of PO₄based backfill cements in repository environments for DNLEU disposal
- Performance of aged cement grouts for encapsulating radioactive wastes

Forward vision

- The key focus going forward is to improve NWS fundamental understanding of how engineered materials perform in representative UK LSSR environments. This includes:
 - > Performance of EBS materials in extreme geochemical environments
 - > Suitability of EBS materials in interbedded environments
 - > Potential impact of high organic content host rocks on EBS material performance
- EBS Materials of interest include:
 - > Those utilised in UK illustrative LSSR concepts (bentonite, cementitious materials)
 - Whether EBS materials from UK illustrative evaporite concepts can be adapted to some UK LSSR environments (e.g. crushed salt)
 - > Novel/new materials that can meet the desired safety functions of a barrier material
- NWS are also keen to continue understanding barrier performance above 100°C to support optimisation of the GDF footprint