

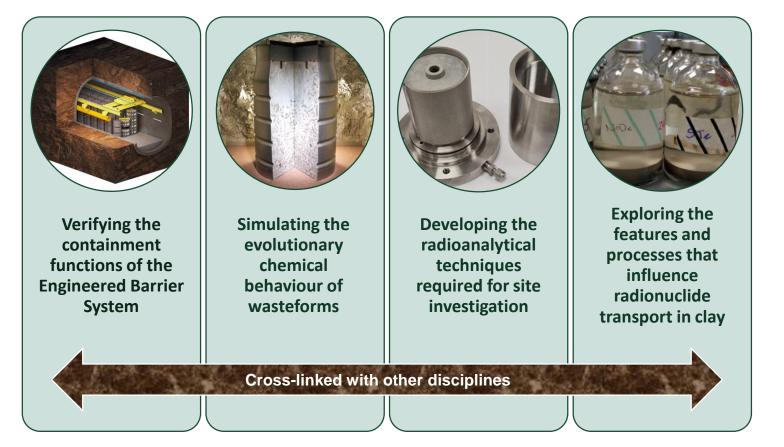
RSO Discipline Update: Radiochemistry

Discipline Lead: Prof Francis Livens (University of Manchester) NWS Subject Matter Expert: Dr Will Bower

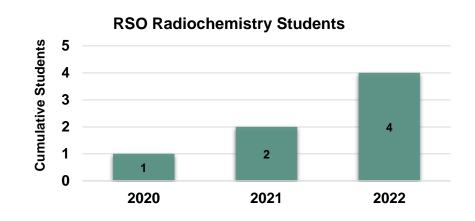
OFFICIAL

Who are we?

Francis Livens Professor of Radiochemistry Director, Dalton Nuclear Institute NDA Board Member


Will Bower

Senior Radiochemist, Nuclear Waste Services


What do we do?

The Radiochemistry Discipline aims to **improve the predictability of radionuclide behaviour across the GDF system** and supports the safety case by:

Active PhD Projects

Meg Watters The missing sink? Controls on iodine migration in the geosphere

Charley Istance Mechanisms of radionuclide retention in aged cement

- Steady growth of students in discipline area since RSO launch.
- NEW project allocated for 2023: Can the co-mobility of actinides and neutron poisons be better understood to support criticality safety?

Raphael Margreiter Phosphate-bearing cements for depleted uranium disposal



Becky Snow The geological fate & impact of isosaccharinic acid (ISA)

Other interactions

14th International Symposium on Nuclear and Environmental Radiochemical Analysis: ERA14

Future Priorities

Challenge Area 2: Contaminant Pathways

1. To develop a mechanistic understanding of retention and, or transport within LSSR, for priority radionuclides and/or non-radiological species.

2. To increase understanding of the key controls on radionuclide transport processes in evolving LSSR systems, with a focus on biogeochemical behaviour.